Back to Search Start Over

Change-level detection for Lévy subordinators

Authors :
Zeina Al Masry
Landy Rabehasaina
Ghislain Verdier
FEMTO-ST institute, Université de Bourgogne Franche-Comté, CNRS, ENSMM, Besançon
Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB)
Université de Bourgogne (UB)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP)
Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Stochastic Processes and their Applications. 147:423-455
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Let $\boldsymbol{X}=(X_t)_{t\ge 0}$ be a process behaving as a general increasing Lévy process (subordinator) prior to hitting a given unknown level $m_0$, then behaving as another different subordinator once this threshold is crossed. This paper addresses the detection of this unknown threshold $m_0\in [0,+\infty]$ from an observed trajectory of the process. These kind of model and issue are encountered in many areas such as reliability and quality control in degradation problems. More precisely, we construct, from a sample path and for each $\epsilon >0$, a so-called detection level $L_\epsilon$ by considering a CUSUM inspired procedure. Under mild assumptions, this level is such that, while $m_0$ is infinite (i.e. when no changes occur), its expectation $ \mathbb{E}_{\infty}(L_{\epsilon})$ tends to $+\infty$ as $\epsilon$ tends to $0$, and the expected overshoot $ \mathbb{E}_{m_0}([L_{\epsilon} - m_0]^+)$, while the threshold $m_0$ is finite, is negligible compared to $ \mathbb{E}_{\infty}(L_{\epsilon})$ as $\epsilon$ tends to $0$. Numerical illustrations are provided when the Lévy processes are gamma processes with different shape parameters.

Details

ISSN :
03044149
Volume :
147
Database :
OpenAIRE
Journal :
Stochastic Processes and their Applications
Accession number :
edsair.doi.dedup.....ecf400a403c2803524aa3ccdb7894358