Back to Search Start Over

On distinct finite covers of 3-manifolds

Authors :
Jean Raimbault
JungHwan Park
Arunima Ray
Bram Petri
Stefan Friedl
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016)
Source :
Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2021, 70 (2), pp.809-846. ⟨10.1512/iumj.2021.70.8357⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Every closed orientable surface S has the following property: any two connected covers of S of the same degree are homeomorphic (as spaces). In this, paper we give a complete classification of compact 3-manifolds with empty or toroidal boundary which have the above property. We also discuss related group-theoretic questions.<br />Comment: 29 pages. V3: Implements suggestions from a referee report. This version has been accepted for publication by IUMJ

Details

Language :
English
ISSN :
00222518
Database :
OpenAIRE
Journal :
Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2021, 70 (2), pp.809-846. ⟨10.1512/iumj.2021.70.8357⟩
Accession number :
edsair.doi.dedup.....ed0d331f90e51e32e2e3697ae1ef5991
Full Text :
https://doi.org/10.1512/iumj.2021.70.8357⟩