Back to Search Start Over

Solution of symmetric positive semidefinite Procrustes problem

Authors :
Chen Zhencheng
Peng Zhenyun
Wang Qing-wen
Peng Jingjing
Source :
Electronic Journal of Linear Algebra. 35:543-554
Publication Year :
2019
Publisher :
University of Wyoming Libraries, 2019.

Abstract

In this paper, the symmetric positive semidefinite Procrustes problem is considered. By using matrix inner product and matrix decomposition theory, an explicit expression of the solution is given. Based on the explicit expression given in this paper, it is easy to derive the explicit expression of the solution given by Woodgate [K.G. Woodgate. Least-squares solution of F = PG over positive semidefinite symmetric P . Linear Algebra Appl., 245:171–190, 1996.] and by Liao [A.P. Liao. On the least squares problem of a matrix equation. J. Comput. Math., 17:589–594, 1999.] for the Procrustes problem in some special cases. The explicit expression given in this paper also shows that the solution of the special inverse eigenvalue problem considered by Zhang [L. Zhang. A class of inverse eigenvalue problem for symmetric nonnegative definite matrices. J. Hunan Educational Inst., 2:11–17, 1995 (in Chinese).] can be computed exactly. Examples to illustrate the correctness of the theory results are given.

Details

ISSN :
10813810
Volume :
35
Database :
OpenAIRE
Journal :
Electronic Journal of Linear Algebra
Accession number :
edsair.doi.dedup.....ede21affcbe6d573b211c33d130b2ec2