Back to Search Start Over

Spleen-Dependent Regulation of Antigenic Variation in Malaria Parasites: Plasmodium knowlesi SICAvar Expression Profiles in Splenic and Asplenic Hosts

Authors :
Jianlin Jiang
Vladimir Corredor
Stacey A. Lapp
Cindy Korir-Morrison
Mary R. Galinski
Yaohui Bai
Source :
PLoS ONE, PLoS ONE, Vol 8, Iss 10, p e78014 (2013)
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

BACKGROUND:Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA) variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1) antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+), and a related progeny clone, Pk1(B+)1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera. PRINCIPAL FINDINGS:We have investigated SICAvar RNA and protein expression in Pk1(A+), Pk1(B+)1+, and SICA[-] parasites. The Pk1(A+) and Pk1(B+)1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry. SIGNIFICANCE:SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+) to Pk1(B+)1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying antigenic variation in the context of the host environment.

Details

ISSN :
19326203
Volume :
8
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....ee29994c5860cb6de75c38fb34b0a9b5
Full Text :
https://doi.org/10.1371/journal.pone.0078014