Back to Search Start Over

New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage

Authors :
Jing-Hua Guo
Yoshiyuki Miyamoto
Hong Zhang
Source :
Physical Chemistry Chemical Physics. 15:8199
Publication Year :
2013
Publisher :
Royal Society of Chemistry (RSC), 2013.

Abstract

Applying density functional theory (DFT) calculations, we have designed fullerenes (C20, C24, C26, C28, C30, C36, C60 and C70) intercalated phthalocyanine covalent organic frameworks (Cn-Pc-PBBA COFs). First principles molecular dynamics (MD) simulations showed that the structures of Cn-Pc-PBBA COFs are stable at room temperature and even at higher temperature (500 K). The interlayer distance of Pc-PBBA COF has been expanded to 7.48-13.25 Å by the intercalated fullerenes, and the pore volume and surface area were enlarged by 2.3-3.1 and 2.0-2.6 times, respectively. The grand canonical Monte Carlo (GCMC) simulations show that our designed Cn-Pc-PBBA COFs exhibit a superior hydrogen storage capability: at 77 K and P = 100 bar, the hydrogen gravimetric and volumetric uptakes reach 9.4-12 wt% and 48.1-52.2 g L(-1), respectively. To meet the requirement for practical application in hydrogen storage, we use the Li-doping method to modify the hydrogen storage performance of Cn-Pc-PBBA COFs. Our results show that the Li atoms can stably locate on the surface of C30-, C36, C60 and C70-Pc-PBBA COFs. At T = 298 K and P = 100 bar, for these four Li-doped Cn-Pc-PBBA COFs, the gravimetric and volumetric uptakes of H2 reach 4.2 wt% and 18.2 g L(-1), respectively.

Details

ISSN :
14639084 and 14639076
Volume :
15
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi.dedup.....ee3fd4e35c2c8b30c6e168e106cb7f8d
Full Text :
https://doi.org/10.1039/c3cp50492a