Back to Search
Start Over
Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains
- Source :
- Genome Biology, Vol 21, Iss 1, Pp 1-19 (2020), Genome Biology
- Publication Year :
- 2021
- Publisher :
- Apollo - University of Cambridge Repository, 2021.
-
Abstract
- Funder: European Molecular Biology Laboratory; doi: http://dx.doi.org/10.13039/100013060<br />Background: CTCF binding contributes to the establishment of a higher-order genome structure by demarcating the boundaries of large-scale topologically associating domains (TADs). However, despite the importance and conservation of TADs, the role of CTCF binding in their evolution and stability remains elusive. Results: We carry out an experimental and computational study that exploits the natural genetic variation across five closely related species to assess how CTCF binding patterns stably fixed by evolution in each species contribute to the establishment and evolutionary dynamics of TAD boundaries. We perform CTCF ChIP-seq in multiple mouse species to create genome-wide binding profiles and associate them with TAD boundaries. Our analyses reveal that CTCF binding is maintained at TAD boundaries by a balance of selective constraints and dynamic evolutionary processes. Regardless of their conservation across species, CTCF binding sites at TAD boundaries are subject to stronger sequence and functional constraints compared to other CTCF sites. TAD boundaries frequently harbor dynamically evolving clusters containing both evolutionarily old and young CTCF sites as a result of the repeated acquisition of new species-specific sites close to conserved ones. The overwhelming majority of clustered CTCF sites colocalize with cohesin and are significantly closer to gene transcription start sites than nonclustered CTCF sites, suggesting that CTCF clusters particularly contribute to cohesin stabilization and transcriptional regulation. Conclusions: Dynamic conservation of CTCF site clusters is an apparently important feature of CTCF binding evolution that is critical to the functional stability of a higher-order chromatin structure.
- Subjects :
- CCCTC-Binding Factor
lcsh:QH426-470
Cross-species analysis
Biology
Evolution, Molecular
Mice
03 medical and health sciences
0302 clinical medicine
Higher Order Chromatin Structure
CTCF binding evolution
Functional stability
Transcriptional regulation
Animals
Evolutionary dynamics
TADs
lcsh:QH301-705.5
Gene
030304 developmental biology
0303 health sciences
Genome
Cohesin
Mechanism (biology)
Research
Chromatin
Ctcf binding
Chromatin architecture
lcsh:Genetics
lcsh:Biology (General)
CTCF
Evolutionary biology
Chromatin Immunoprecipitation Sequencing
030217 neurology & neurosurgery
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Genome Biology, Vol 21, Iss 1, Pp 1-19 (2020), Genome Biology
- Accession number :
- edsair.doi.dedup.....ee5e206c8ab4674b51ddf82e597ab553
- Full Text :
- https://doi.org/10.17863/cam.62900