Back to Search Start Over

A New Hemodynamic Ex Vivo Model for Medical Devices Assessment

Authors :
Christophe Sarraf
Feng Chai
Stéphan Haulon
Blandine Maurel
Mickaël Maton
Jonathan Sobocinski
Nicolas Blanchemain
Patrick Lermusiaux
Adrien Hertault
Farid Bakir
Physiopathologie des Adaptations Nutritionnelles (PhAN)
Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE)
Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 (MBLC - ADDS)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille
Laboratoire de Dynamique des Fluides (DynFluid)
Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)
Sarcomes osseux et remodelage des tissus calcifiés - Phy-Os [Nantes - INSERM U1238] (Phy-Os)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bretagne Loire (UBL)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE)
Université de Nantes (UN)-Université de Nantes (UN)
Université de Lille
Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)
Laboratoire de Génie Electrique et Ferroélectricité (LGEF)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon
Hospices Civils de Lyon (HCL)
Hôpital Louis Pradel [CHU - HCL]
Hôpital Edouard Herriot [CHU - HCL]
Institut National de la Recherche Agronomique (INRA)-Université de Nantes (UN)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)
Conservatoire National des Arts et Métiers [CNAM] (CNAM)
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
Source :
Annals of Vascular Surgery, Annals of Vascular Surgery, Elsevier Masson, 2015, 29 (8), pp.1648-1655. ⟨10.1016/j.avsg.2015.06.066⟩, Annals of Vascular Surgery, 2015, 29 (8), pp.1648-1655. ⟨10.1016/j.avsg.2015.06.066⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

Introduction: In stent restenosis (ISR) remains a major public health concern with an increased morbidity, mortality and health-related costs. Drug-eluting stents (DES) have reduced ISR, but are associated with healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. Evaluations of new DES are based on animal models or in vitro release systems which show several limitations. The role of flow and shear stress on endothelial cell and ISR has also been emphasized. The aim of this work was to design and first evaluate an original bioreactor, reproducing ex vivo hemodynamic and biological conditions similar to human conditions, to further evaluate new DES. Methods & Results: This bioreactor was designed to study up to 6 stented arteries connected in bypass, immersed in a culture box, in which circulated a physiological systolo-diastolic resistive flow. Two centrifugal pumps drove the flow. The principal pump generated pulsating flows by modulation of rotation velocity, and the second pump worked at constant rotation velocity, ensuring the counter pressure levels and backflows. The flow rate, the velocity profile, the arterial pressure and the resistance of the flow were adjustable. The bioreactor was placed in an incubator to reproduce a biological environment. A first experience of feasibility was realized over a period of 24 days. Three rat aortic thoracic arteries were placed into the bioreactor, immersed in cell culture medium change every 3 days, and with a circulating systole diastolic flux circulating among the entire experimentation. There was no infection, no leak. At the end of experimentation, a morphometric analysis was performed confirming the viability of the arteries. Conclusion: We design and patent an original hemodynamic ex vivo model to further study new DES and ISR. We will next validate this ex vivo model of ISR reproducing this experimentation with stented arteries. Once validated, this bioreactor will allow characterization of the velocity field and drug transfers within a stented artery with new functionalized DES, with experimental means not available in vivo. Another main point will be the reduction of animal experimentation, and the availability of first results of new DES in human tissues (human infra popliteal or coronary arteries collected during human donation).

Details

Language :
English
ISSN :
08905096 and 16155947
Database :
OpenAIRE
Journal :
Annals of Vascular Surgery, Annals of Vascular Surgery, Elsevier Masson, 2015, 29 (8), pp.1648-1655. ⟨10.1016/j.avsg.2015.06.066⟩, Annals of Vascular Surgery, 2015, 29 (8), pp.1648-1655. ⟨10.1016/j.avsg.2015.06.066⟩
Accession number :
edsair.doi.dedup.....ee6d8822dcd1f18f21ed244b035f8ef4