Back to Search
Start Over
Wave aberrations in rhesus monkeys with vision-induced ametropias
- Source :
- Vision research. 47(21)
- Publication Year :
- 2007
-
Abstract
- The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development.
- Subjects :
- medicine.medical_specialty
Refractive error
Biometry
genetic structures
Eye disease
Coma (optics)
Astigmatism
Eye
Refraction, Ocular
Article
Vision disorder
Optics
Ophthalmology
medicine
Myopia
Animals
Adaptive optics
Trefoil
Ultrasonography
business.industry
Accommodation, Ocular
medicine.disease
Refractive Errors
Macaca mulatta
Sensory Systems
eye diseases
Spherical aberration
Hyperopia
Models, Animal
sense organs
medicine.symptom
business
Photic Stimulation
Subjects
Details
- ISSN :
- 00426989
- Volume :
- 47
- Issue :
- 21
- Database :
- OpenAIRE
- Journal :
- Vision research
- Accession number :
- edsair.doi.dedup.....ef76e060fafef8139146df10c109e5c7