Back to Search
Start Over
Transcriptomic Response of Escherichia coli O157:H7 to Oxidative Stress
- Source :
- Applied and Environmental Microbiology. 75:6110-6123
- Publication Year :
- 2009
- Publisher :
- American Society for Microbiology, 2009.
-
Abstract
- Chlorinated water is commonly used in industrial operations to wash and sanitize fresh-cut, minimally processed produce. Here we compared 42 human outbreak strains that represented nine distinct Escherichia coli O157:H7 genetic lineages (or clades) for their relative resistance to chlorine treatment. A quantitative measurement of resistance was made by comparing the extension of the lag phase during growth of each strain under exposure to sublethal concentrations of sodium hypochlorite in Luria-Bertani or brain heart infusion broth. Strains in clade 8 showed significantly ( P < 0.05) higher resistance to chlorine than strains from other clades of E. coli O157:H7. To further explore how E. coli O157:H7 responds to oxidative stress at transcriptional levels, we analyzed the global gene expression profiles of two strains, TW14359 (clade 8; associated with the 2006 spinach outbreak) and Sakai (clade 1; associated with the 1996 radish sprout outbreak), under sodium hypochlorite or hydrogen peroxide treatment. We found over 380 genes were differentially expressed (more than twofold; P < 0.05) after exposure to low levels of chlorine or hydrogen peroxide. Significantly upregulated genes included several regulatory genes responsive to oxidative stress, genes encoding putative oxidoreductases, and genes associated with cysteine biosynthesis, iron-sulfur cluster assembly, and antibiotic resistance. Identification of E. coli O157:H7 strains with enhanced resistance to chlorine decontamination and analysis of their transcriptomic response to oxidative stress may improve our basic understanding of the survival strategy of this human enteric pathogen on fresh produce during minimal processing.
- Subjects :
- Sodium Hypochlorite
chemistry.chemical_element
Biology
Escherichia coli O157
medicine.disease_cause
Applied Microbiology and Biotechnology
Microbiology
chemistry.chemical_compound
Stress, Physiological
Drug Resistance, Bacterial
Gene expression
Chlorine
medicine
Humans
Hydrogen peroxide
Gene
Escherichia coli
Regulator gene
Ecology
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Hydrogen Peroxide
Anti-Bacterial Agents
Oxidative Stress
chemistry
Sodium hypochlorite
Food Microbiology
Oxidative stress
Food Science
Biotechnology
Subjects
Details
- ISSN :
- 10985336 and 00992240
- Volume :
- 75
- Database :
- OpenAIRE
- Journal :
- Applied and Environmental Microbiology
- Accession number :
- edsair.doi.dedup.....f000d2112084227d518418f5c68a4c9a
- Full Text :
- https://doi.org/10.1128/aem.00914-09