Back to Search Start Over

On commuting billiards in higher-dimensional spaces of constant curvature

Authors :
Alexey Glutsyuk
UMPA
Unité de Mathématiques Pures et Appliquées (UMPA-ENSL)
École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
Source :
Pacific Journal of Mathematics, Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2020, 305 (2), pp.577--595. ⟨10.2140/pjm.2020.305.577⟩, Pacific Journal of Mathematics, 2020, 305 (2), pp.577--595. ⟨10.2140/pjm.2020.305.577⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

We consider two nested billiards in $\mathbb R^d$, $d\geq3$, with $C^2$-smooth strictly convex boundaries. We prove that if the corresponding actions by reflections on the space of oriented lines commute, then the billiards are confocal ellipsoids. This together with the previous analogous result of the author in two dimensions solves completely the Commuting Billiard Conjecture due to Sergei Tabachnikov. The main result is deduced from the classical theorem due to Marcel Berger saying that in higher dimensions only quadrics may have caustics. We also prove versions of Berger's theorem and the main result for billiards in spaces of constant curvature: space forms.<br />Comment: 21 pages. The main result on commuting billiards and Berger's result on caustics are extended to billiards in spaces of constant curvature

Details

Language :
English
ISSN :
00308730
Database :
OpenAIRE
Journal :
Pacific Journal of Mathematics, Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2020, 305 (2), pp.577--595. ⟨10.2140/pjm.2020.305.577⟩, Pacific Journal of Mathematics, 2020, 305 (2), pp.577--595. ⟨10.2140/pjm.2020.305.577⟩
Accession number :
edsair.doi.dedup.....f005a1087458d3d35a75014302bbe661
Full Text :
https://doi.org/10.2140/pjm.2020.305.577⟩