Back to Search Start Over

An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration

Authors :
Luke Bornn
Pierre Del Moral
Arnaud Doucet
Pierre Jacob
Department of Statistics [Vancouver] (UBC Statistics)
University of British Columbia (UBC)
Centre de Recherche en Économie et Statistique (CREST)
Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)-École polytechnique (X)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)-Centre National de la Recherche Scientifique (CNRS)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Advanced Learning Evolutionary Algorithms (ALEA)
Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Dept of Statistics & Dept of Computer Science
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Department of Statistics
Department of Statistics [Oxford]
University of Oxford [Oxford]-University of Oxford [Oxford]
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
University of Oxford-University of Oxford
Source :
Journal of Computational and Graphical Statistics, Journal of Computational and Graphical Statistics, Taylor & Francis, 2013, 22 (3), ⟨10.1080/10618600.2012.723569⟩, Journal of Computational and Graphical Statistics, 2013, 22 (3), ⟨10.1080/10618600.2012.723569⟩
Publication Year :
2011
Publisher :
arXiv, 2011.

Abstract

While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area which we feel deserves much further attention. Towards this aim, this paper proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains -- a feature which both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance is studied in several applications. Through a Bayesian variable selection example, the authors demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm's adaptive proposal to induce mode-jumping is illustrated through a trimodal density and a Bayesian mixture modeling application. Lastly, through a 2D Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models.<br />Comment: 33 pages, 20 figures (the supplementary materials are included as appendices)

Details

ISSN :
10618600 and 15372715
Database :
OpenAIRE
Journal :
Journal of Computational and Graphical Statistics, Journal of Computational and Graphical Statistics, Taylor & Francis, 2013, 22 (3), ⟨10.1080/10618600.2012.723569⟩, Journal of Computational and Graphical Statistics, 2013, 22 (3), ⟨10.1080/10618600.2012.723569⟩
Accession number :
edsair.doi.dedup.....f0102032f9e6e2df2371697dc3264abf
Full Text :
https://doi.org/10.48550/arxiv.1109.3829