Back to Search Start Over

Image-based & machine learning-guided multiplexed serology test for SARS-CoV-2

Authors :
Vilja PietiƤinen
Minttu Polso
Ede Migh
Christian Guckelsberger
Maria Harmati
Akos Diosdi
Laura Turunen
Antti Hassinen
Swapnil Potdar
Annika Koponen
Edina Gyukity Sebestyen
Ferenc Kovacs
Andras Kriston
Reka Hollandi
Katalin Burian
Gabriella Terhes
Adam Visnyovszki
Eszter Fodor
Zsombor Lacza
Anu Kantele
Pekka Kolehmainen
Laura Kakkola
Tomas Strandin
Lev Levanov
Olli Kallioniemi
Lajos Kemeny
Ilkka Julkunen
Olli Vapalahti
Krisztina Buzas
Lassi Paavolainen
Peter Horvath
Jussi Hepojoki
Source :
medRxiv
Publication Year :
2022

Abstract

Here, we describe a scalable and automated, high-content microscopy -based mini-immunofluorescence assay (mini-IFA) for serological testing i.e., detection of antibodies. Unlike conventional IFA, which often relies on the use of cells infected with the target pathogen, our assay employs transfected cells expressing individual viral antigens. The assay builds on a custom neural network-based image analysis pipeline for the automated and multiplexed detection of immunoglobulins (IgG, IgA, and IgM) in patient samples. As a proof-of-concept, we employed high-throughput equipment to set up the assay for measuring antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with spike (S), membrane (M), and nucleo (N) proteins, and the receptor-binding domain (R) as the antigens. We compared the automated mini-IFA results from hundreds of patient samples to the visual observations of human experts and to the results obtained with conventional ELISA. The comparisons demonstrated a high correlation to both, suggesting high sensitivity and specificity of the mini-IFA. By testing pre-pandemic samples and those collected from patients with RT-PCR confirmed SARS-CoV-2 infection, we found mini-IFA to be most suitable for IgG and IgA detection. The results demonstrated N and S proteins as the ideal antigens, and the use of these antigens can serve to distinguish between vaccinated and infected individuals. The assay principle described enables detection of antibodies against practically any pathogen, and none of the assay steps require high biosafety level environment. The simultaneous detection of multiple Ig classes allows for distinguishing between recent and past infection.Public abstractThe manuscript describes a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient blood samples. The automated method builds on machine-learning -guided image analysis with SARS-CoV-2 as the model pathogen. The method enables simultaneous measurement of IgM, IgA, and IgG responses against different virus antigens in a high throughput manner. The assay relies on antigens expressed through transfection and allows for differentiation between vaccine-induced and infection-induced antibody responses. The transfection-based antigen expression enables performing the assay at a low biosafety level laboratory and allows fast adaptation of the assay to emerging pathogens. Our results provide proof-of-concept for the approach, demonstrating fast and accurate measurement of antibody responses in a clinical and research set-up.

Details

ISSN :
17561833
Database :
OpenAIRE
Journal :
medRxiv
Accession number :
edsair.doi.dedup.....f0450c2b662a9967303743e6b9aee2b6
Full Text :
https://doi.org/10.1101/2022.09.08.22279729