Back to Search Start Over

Self-similarity and fractional Brownian motions on Lie groups

Authors :
Baudoin, F.
Coutin, L.
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Electronic Journal of Probability, Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2008, 13 (38), pp.1120-1139, Electronic Journal of Probability, 2008, 13 (38), pp.1120-1139
Publication Year :
2008
Publisher :
HAL CCSD, 2008.

Abstract

The goal of this paper is to define and study a notion of fractional Brownian motion on a Lie group. We define it as at the solution of a stochastic differential equation driven by a linear fractional Brownian motion. We show that this process has stationary increments and satisfies a local self-similar property. Furthermore the Lie groups for which this self-similar property is global are characterized. Finally, we prove an integration by parts formula on the path group space and deduce the existence of a density.

Details

Language :
English
ISSN :
10836489
Database :
OpenAIRE
Journal :
Electronic Journal of Probability, Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2008, 13 (38), pp.1120-1139, Electronic Journal of Probability, 2008, 13 (38), pp.1120-1139
Accession number :
edsair.doi.dedup.....f076670e0796e1b4ca39b82c5f51fa37