Back to Search Start Over

How Data Workers Cope with Uncertainty

Authors :
Samuel Huron
Marc-Emmanuel Perrin
James Eagan
Nadia Boukhelifa
Institut National de la Recherche Agronomique (INRA)
Laboratoire Traitement et Communication de l'Information (LTCI)
Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Télécom ParisTech
Département Sciences Economiques et Sociales (SES)
Institut interdisciplinaire de l’innovation (I3, une unité mixte de recherche CNRS (UMR 9217))
École polytechnique (X)-Télécom ParisTech-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Sociologie Information-Communication Design (SID)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Télécom ParisTech-MINES ParisTech - École nationale supérieure des mines de Paris
Institut Polytechnique de Paris (IP Paris)
ACM
École polytechnique (X)-Télécom ParisTech-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS)
École polytechnique (X)-Télécom ParisTech-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Télécom ParisTech-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS)
Source :
CHI, CHI 2017: Proceedings of the 35th international conference on human factors in computing systems, CHI 2017, CHI 2017, ACM, May 2017, Denver, United States. ⟨10.1145/3025453.3025738⟩
Publication Year :
2017
Publisher :
ACM, 2017.

Abstract

International audience; Uncertainty plays an important and complex role in data analysis , where the goal is to find pertinent patterns, build robust models, and support decision making. While these endeavours are often associated with professional data scientists, many domain experts engage in such activities with varying skill levels. To understand how these domain experts (or "data workers") analyse uncertain data we conducted a qualitative user study with 12 participants from a variety of domains. In this paper, we describe their various coping strategies to understand, min-imise, exploit or even ignore this uncertainty. The choice of the coping strategy is influenced by accepted domain practices, but appears to depend on the types and sources of uncertainty and whether participants have access to support tools. Based on these findings, we propose a new process model of how data workers analyse various types of uncertain data and conclude with design considerations for uncertainty-aware data analytics.

Details

Database :
OpenAIRE
Journal :
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
Accession number :
edsair.doi.dedup.....f0f6a9444fb2e111bf9254c6bda03bd2
Full Text :
https://doi.org/10.1145/3025453.3025738