Back to Search Start Over

Efficient Light-Driven Oxidation of Alcohols Using an Organic Chromophore–Catalyst Assembly Anchored to TiO2

Authors :
Thomas J. Meyer
Zachary A. Morseth
Toan V. Pho
Benjamin D. Sherman
John M. Papanikolas
John R. Reynolds
Kirk S. Schanze
Matthew V. Sheridan
Source :
ACS Applied Materials & Interfaces. 8:9125-9133
Publication Year :
2016
Publisher :
American Chemical Society (ACS), 2016.

Abstract

The ligand 5-PO3H2-2,2':5',2″-terthiophene-5-trpy, T3 (trpy = 2,2':6',2″-terpyridine), was prepared and studied in aqueous solutions along with its metal complex assembly [Ru(T3)(bpy)(OH2)](2+) (T3-Ru-OH2, bpy = 2,2'-bipyridine). T3 contains a phosphonic acid group for anchoring to a TiO2 photoanode under aqueous conditions, a terthiophene fragment for light absorption and electron injection into TiO2, and a terminal trpy ligand for the construction of assemblies comprising a molecular oxidation catalyst. At a TiO2 photoanode, T3 displays efficient injection at pH 4.35 as evidenced by the high photocurrents (∼350 uA/cm(2)) arising from hydroquinone oxidation. Addition of [Ru(bpy)(OTf)][OTf]2 (bpy = 2,2'-bipyridine, OTf(-) = triflate) to T3 at the free trpy ligand forms the molecular assembly, T3-Ru-OH2, with the oxidative catalyst fragment: [Ru(trpy)(bpy)(OH2)](2+). The new assembly, T3-Ru-OH2, was used to perform efficient light-driven oxidation of phenol (230 μA/cm(2)) and benzyl alcohol (25 μA/cm(2)) in a dye-sensitized photoelectrosynthesis cell.

Details

ISSN :
19448252 and 19448244
Volume :
8
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....f0f96e3f08f8397435ee50bb4eba5dc2
Full Text :
https://doi.org/10.1021/acsami.6b00932