Back to Search Start Over

A New Member of the Alkaline Phosphatase Superfamily with a Formylglycine Nucleophile: Structural and Kinetic Characterisation of a Phosphonate Monoester Hydrolase/Phosphodiesterase from Rhizobium leguminosarum

Authors :
Stefanie Jonas
Marko Hyvönen
Florian Hollfelder
Bert van Loo
Source :
Journal of Molecular Biology
Publication Year :
2008
Publisher :
Elsevier BV, 2008.

Abstract

The alkaline phosphatase superfamily comprises a large number of hydrolytic metalloenzymes such as phosphatases and sulfatases. We have characterised a new member of this superfamily, a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum (RlPMH) both structurally and kinetically. The 1.42 A crystal structure shows structural homology to arylsulfatases with conservation of the core α/β-fold, the mononuclear active site and most of the active-site residues. Sulfatases use a unique formylglycine nucleophile, formed by posttranslational modification of a cysteine/serine embedded in a signature sequence (C/S)XPXR. We provide mass spectrometric and mutational evidence that RlPMH is the first non-sulfatase enzyme shown to use a formylglycine as the catalytic nucleophile. RlPMH hydrolyses phosphonate monoesters and phosphate diesters with similar efficiency. Burst kinetics suggest that substrate hydrolysis proceeds via a double-displacement mechanism. Kinetic characterisation of active-site mutations establishes the catalytic contributions of individual residues. A mechanism for substrate hydrolysis is proposed on the basis of the kinetic data and structural comparisons with E. coli alkaline phosphatase and Pseudomonas aeruginosa arylsulfatase. RlPMH represents a further example of conservation of the overall structure and mechanism within the alkaline phosphatase superfamily.

Details

ISSN :
00222836
Volume :
384
Database :
OpenAIRE
Journal :
Journal of Molecular Biology
Accession number :
edsair.doi.dedup.....f0faf94c4791f3d65a088433e63967c3
Full Text :
https://doi.org/10.1016/j.jmb.2008.08.072