Back to Search
Start Over
Strong commutativity preserving maps on rings
- Source :
- Rocky Mountain J. Math. 44, no. 3 (2014), 733-742
- Publication Year :
- 2014
- Publisher :
- Rocky Mountain Mathematics Consortium, 2014.
-
Abstract
- Suppose $\R$ is a unital ring having an idempotent element $e$ which satisfies $a{\R}e=0$ implies $a=0$ and $a{\R}(1-e)=0$ implies $a=0$. In this paper, we aim to characterize the map $f:{\R}\rightarrow {\R}$, $f$ is surjective and $[f(x),f(y)]=[x,y]$ for all $x,y\in {\R}$. It is shown that $f(x)=\alpha x +\xi (x)$ for all $x\in {\R}$, where $\alpha \in {\Z}({\R})$, $\alpha^2=1$, and $\xi$ is a map from ${\R}$ into ${\Z}({\R})$. As an application, a characterization of nonlinear surjective maps preserving strong commutativity on von Neumann algebras with no central summands of type $I_1$ is obtained.
- Subjects :
- Discrete mathematics
Ring (mathematics)
16N60
16U80
General Mathematics
Characterization (mathematics)
Type (model theory)
von Neumann algebra
Surjective function
symbols.namesake
Strong commutativity preserving
Von Neumann algebra
symbols
Von Neumann regular ring
Idempotent element
Commutative property
ring
Mathematics
Subjects
Details
- ISSN :
- 00357596
- Volume :
- 44
- Database :
- OpenAIRE
- Journal :
- Rocky Mountain Journal of Mathematics
- Accession number :
- edsair.doi.dedup.....f103ea5e27dda9e5cde179b884182970
- Full Text :
- https://doi.org/10.1216/rmj-2014-44-3-733