Back to Search Start Over

Strong commutativity preserving maps on rings

Authors :
Shuanping Du
Zhaofang Bai
Source :
Rocky Mountain J. Math. 44, no. 3 (2014), 733-742
Publication Year :
2014
Publisher :
Rocky Mountain Mathematics Consortium, 2014.

Abstract

Suppose $\R$ is a unital ring having an idempotent element $e$ which satisfies $a{\R}e=0$ implies $a=0$ and $a{\R}(1-e)=0$ implies $a=0$. In this paper, we aim to characterize the map $f:{\R}\rightarrow {\R}$, $f$ is surjective and $[f(x),f(y)]=[x,y]$ for all $x,y\in {\R}$. It is shown that $f(x)=\alpha x +\xi (x)$ for all $x\in {\R}$, where $\alpha \in {\Z}({\R})$, $\alpha^2=1$, and $\xi$ is a map from ${\R}$ into ${\Z}({\R})$. As an application, a characterization of nonlinear surjective maps preserving strong commutativity on von Neumann algebras with no central summands of type $I_1$ is obtained.

Details

ISSN :
00357596
Volume :
44
Database :
OpenAIRE
Journal :
Rocky Mountain Journal of Mathematics
Accession number :
edsair.doi.dedup.....f103ea5e27dda9e5cde179b884182970
Full Text :
https://doi.org/10.1216/rmj-2014-44-3-733