Back to Search Start Over

An Empirical Evaluation of Zero Resource Acoustic Unit Discovery

Authors :
Alena Rott
Santosh Kesiraju
Sanjeev Khudanpur
Lucas Ondel
Jinyi Yang
Ming Sun
Chunxi Liu
Najim Dehak
Pegah Ghahremani
Lukas Burget
Source :
ICASSP
Publication Year :
2017

Abstract

Acoustic unit discovery (AUD) is a process of automatically identifying a categorical acoustic unit inventory from speech and producing corresponding acoustic unit tokenizations. AUD provides an important avenue for unsupervised acoustic model training in a zero resource setting where expert-provided linguistic knowledge and transcribed speech are unavailable. Therefore, to further facilitate zero-resource AUD process, in this paper, we demonstrate acoustic feature representations can be significantly improved by (i) performing linear discriminant analysis (LDA) in an unsupervised self-trained fashion, and (ii) leveraging resources of other languages through building a multilingual bottleneck (BN) feature extractor to give effective cross-lingual generalization. Moreover, we perform comprehensive evaluations of AUD efficacy on multiple downstream speech applications, and their correlated performance suggests that AUD evaluations are feasible using different alternative language resources when only a subset of these evaluation resources can be available in typical zero resource applications.<br />5 pages, 1 figure; Accepted for publication at ICASSP 2017

Details

Language :
English
Database :
OpenAIRE
Journal :
ICASSP
Accession number :
edsair.doi.dedup.....f2489f01e05fba90670a62d3eadc0736