Back to Search Start Over

Initialisation of Nonlinearities for PNL and Wiener systems Inversion

Authors :
Jordi Solé-Casals
Christian Jutten
Dinh-Tuan Pham
Universitat de Vic. Escola Politècnica Superior
Universitat de Vic. Grup de Recerca en Tecnologies Digitals
International Work-Conference on Artificial and Natural Neural Networks (7a : 2003 : Maó, Menorca, Illes Balears)
Source :
RIUVic. Repositorio Institucional de la Universidad de Vic, instname, Recercat. Dipósit de la Recerca de Catalunya, Artificial Neural Nets Problem Solving Methods ISBN: 9783540402114, IWANN (2), Scopus-Elsevier
Publication Year :
2003
Publisher :
Springer, 2003.

Abstract

This paper proposes a very fast method for blindly initial- izing a nonlinear mapping which transforms a sum of random variables. The method provides a surprisingly good approximation even when the basic assumption is not fully satis¯ed. The method can been used success- fully for initializing nonlinearity in post-nonlinear mixtures or in Wiener system inversion, for improving algorithm speed and convergence.

Details

ISBN :
978-3-540-40211-4
ISBNs :
9783540402114
Database :
OpenAIRE
Journal :
RIUVic. Repositorio Institucional de la Universidad de Vic, instname, Recercat. Dipósit de la Recerca de Catalunya, Artificial Neural Nets Problem Solving Methods ISBN: 9783540402114, IWANN (2), Scopus-Elsevier
Accession number :
edsair.doi.dedup.....f250877e80d999981ecbbf1cf3c7d864