Back to Search Start Over

Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology

Authors :
Gwenaël Boué
Jacques Laskar
Alexandre C. M. Correia
Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE)
Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Centro de Investigaçao e Desenvolvimento em Matematica e Aplicaçoes (CIDMA)
Universidade de Aveiro
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Celestial Mechanics and Dynamical Astronomy, Celestial Mechanics and Dynamical Astronomy, Springer Verlag, 2016, 126 (1), pp.31-60. ⟨10.1007/s10569-016-9708-x⟩, Celestial Mechanics and Dynamical Astronomy, 2016, 126 (1), pp.31-60. ⟨10.1007/s10569-016-9708-x⟩
Publication Year :
2016

Abstract

In this paper, we present a formalism designed to model tidal interaction with a viscoelastic body made of Maxwell material. Our approach remains regular for any spin rate and orientation, and for any orbital configuration including high eccentricities and close encounters. The method is to integrate simultaneously the rotation and the position of the planet as well as its deformation. We provide the equations of motion both in the body frame and in the inertial frame. With this study, we generalize preexisting models to the spatial case and to arbitrary multipole orders using a formalism taken from quantum theory. We also provide the vectorial expression of the secular tidal torque expanded in Fourier series. Applying this model to close-in exoplanets, we observe that if the relaxation time is longer than the revolution period, the phase space of the system is characterized by the presence of several spin-orbit resonances, even in the circular case. As the system evolves, the planet spin can visit different spin-orbit configurations. The obliquity is decreasing along most of these resonances, but we observe a case where the planet tilt is instead growing. These conclusions derived from the secular torque are successfully tested with numerical integrations of the instantaneous equations of motion on HD 80606b. Our formalism is also well adapted to close-in super-Earths in multiplanet systems which are known to have non-zero mutual inclinations.<br />31 pages, 5 figures

Details

Language :
English
ISSN :
09232958 and 15729478
Database :
OpenAIRE
Journal :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Celestial Mechanics and Dynamical Astronomy, Celestial Mechanics and Dynamical Astronomy, Springer Verlag, 2016, 126 (1), pp.31-60. ⟨10.1007/s10569-016-9708-x⟩, Celestial Mechanics and Dynamical Astronomy, 2016, 126 (1), pp.31-60. ⟨10.1007/s10569-016-9708-x⟩
Accession number :
edsair.doi.dedup.....f26ec0a24e05ee0ad87a6c3eb7f14f5d