Back to Search
Start Over
Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology
- Source :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Celestial Mechanics and Dynamical Astronomy, Celestial Mechanics and Dynamical Astronomy, Springer Verlag, 2016, 126 (1), pp.31-60. ⟨10.1007/s10569-016-9708-x⟩, Celestial Mechanics and Dynamical Astronomy, 2016, 126 (1), pp.31-60. ⟨10.1007/s10569-016-9708-x⟩
- Publication Year :
- 2016
-
Abstract
- In this paper, we present a formalism designed to model tidal interaction with a viscoelastic body made of Maxwell material. Our approach remains regular for any spin rate and orientation, and for any orbital configuration including high eccentricities and close encounters. The method is to integrate simultaneously the rotation and the position of the planet as well as its deformation. We provide the equations of motion both in the body frame and in the inertial frame. With this study, we generalize preexisting models to the spatial case and to arbitrary multipole orders using a formalism taken from quantum theory. We also provide the vectorial expression of the secular tidal torque expanded in Fourier series. Applying this model to close-in exoplanets, we observe that if the relaxation time is longer than the revolution period, the phase space of the system is characterized by the presence of several spin-orbit resonances, even in the circular case. As the system evolves, the planet spin can visit different spin-orbit configurations. The obliquity is decreasing along most of these resonances, but we observe a case where the planet tilt is instead growing. These conclusions derived from the secular torque are successfully tested with numerical integrations of the instantaneous equations of motion on HD 80606b. Our formalism is also well adapted to close-in super-Earths in multiplanet systems which are known to have non-zero mutual inclinations.<br />31 pages, 5 figures
- Subjects :
- Inertial frame of reference
Rotation
010504 meteorology & atmospheric sciences
FOS: Physical sciences
01 natural sciences
Restricted problems
Planet
0103 physical sciences
Extended body
010303 astronomy & astrophysics
Fourier series
Mathematical Physics
Maxwell material
0105 earth and related environmental sciences
HD 80606 b
Earth and Planetary Astrophysics (astro-ph.EP)
Physics
Applied Mathematics
Equations of motion
Astronomy and Astrophysics
Exoplanet
3. Good health
Planetary systems
Computational Mathematics
Classical mechanics
Space and Planetary Science
Modeling and Simulation
Phase space
Dissipative forces
Astrophysics::Earth and Planetary Astrophysics
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Multipole expansion
Astrophysics - Earth and Planetary Astrophysics
Subjects
Details
- Language :
- English
- ISSN :
- 09232958 and 15729478
- Database :
- OpenAIRE
- Journal :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Celestial Mechanics and Dynamical Astronomy, Celestial Mechanics and Dynamical Astronomy, Springer Verlag, 2016, 126 (1), pp.31-60. ⟨10.1007/s10569-016-9708-x⟩, Celestial Mechanics and Dynamical Astronomy, 2016, 126 (1), pp.31-60. ⟨10.1007/s10569-016-9708-x⟩
- Accession number :
- edsair.doi.dedup.....f26ec0a24e05ee0ad87a6c3eb7f14f5d