Back to Search Start Over

Isopentyl-Sulfide-Impregnated Nano-MnO2 for the Selective Sorption of Pd(II) from the Leaching Liquor of Ores

Authors :
Mingjin Xie
Zhangjie Huang
Qin Zhang
Muhan Chen
Wu Shengjie
Lijiang Zhong
Source :
Molecules, Vol 22, Iss 7, p 1117 (2017), Molecules; Volume 22; Issue 7; Pages: 1117, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
Publication Year :
2017
Publisher :
MDPI AG, 2017.

Abstract

Conventional separation methods are not suitable for recovering palladium present in low concentrations in ore leaching solutions. In this study, a novel isopentyl sulfide (S201)-impregnated α-MnO2 nanorod adsorbent (BISIN) was prepared, characterized, and applied for the selective adsorption and separation of palladium from the leaching liquor of ores. Batch studies were carried out, and the main adsorption parameters were systematically investigated, in addition to the relevant thermodynamic parameters, isotherms, and kinetic models. The thermodynamic parameters reflected the endothermic and spontaneous nature of the adsorption. Moreover, the experimental results indicated that the Langmuir isotherm model fits the palladium adsorption data well and the adsorption was well described by the pseudo-second-order kinetic model. The main adsorption mechanisms of palladium were elucidated at the molecular level by X-ray crystal structure analysis. Thiourea was found to be an excellent desorption agent, and the palladium-thiourea complex was also confirmed by X-ray crystal structure analysis. The results indicated that almost all of the Pd(II) (>99.0%) is adsorbed on BISIN, whereas less than 2% of the adsorbed Pt(IV), Fe3+, Cu2+, Ni2+, and Co2+ is observed under the optimum conditions. The proposed method can be used for the efficient adsorption and separation of palladium from the leaching liquor of ores.

Details

Language :
English
ISSN :
14203049
Volume :
22
Issue :
7
Database :
OpenAIRE
Journal :
Molecules
Accession number :
edsair.doi.dedup.....f285e3e0e14ca5713340476f6160eb9e