Back to Search Start Over

Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

Authors :
Bryan R. Coad
Thomas D. Michl
Carla Giles
Stephanie J. Lamont-Friedrich
Hans J. Griesser
Lamont-Friedrich, Stephanie J
Michl, Thomas D
Giles, Carla
Griesser, Hans J
Coad, Bryan R
Publication Year :
2016
Publisher :
UK : Institute of Physics Publishing, 2016.

Abstract

The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others. Refereed/Peer-reviewed

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....f2bf8b62fe182f160f4c9887c59edfa1