Back to Search Start Over

Improved PET/CT Respiratory Motion Compensation by Incorporating Changes in Lung Density

Authors :
Elise Emond
Kris Thielemans
Brian Hutton
Alexandre Bousse
Ludovica Brusaferri
University College of London [London] (UCL)
Laboratoire de Traitement de l'Information Medicale (LaTIM)
Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Brestois Santé Agro Matière (IBSAM)
Université de Brest (UBO)
Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-IMT Atlantique (IMT Atlantique)
Emond, Elise
Institut National de la Santé et de la Recherche Médicale (INSERM)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-Université de Brest (UBO)-Institut Brestois Santé Agro Matière (IBSAM)
Source :
IEEE Transactions on Radiation and Plasma Medical Sciences. 4:594-602
Publication Year :
2020
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2020.

Abstract

Positron emission tomography/computed tomography (PET/CT) lung imaging is highly sensitive to motion. Although several techniques exist to diminish motion artifacts, a few accounts for both tissue displacement and changes in density due to the compression and dilation of the lungs, which cause quantification errors. This article presents an experimental framework for joint activity image reconstruction and motion estimation in PET/CT, where the PET image and the motion are directly estimated from the raw data. Direct motion estimation methods for motion-compensated PET/CT are preferable as they require a single attenuation map only and result in optimal signal-to-noise ratio (SNR). Previous implementations, however, failed to address changes in density during respiration. We propose to account for such changes using the Jacobian determinant of the deformation fields. In a feasibility study, we demonstrate on a modified extended cardiac-torso (XCAT) phantom with breathing motion—where the lung density and activity vary—that our approach achieved better quantification in the lungs than conventional PET/CT joint activity image reconstruction and motion estimation that does not account for density changes. The proposed method resulted in lower bias and variance in the activity images, reduced mean relative activity error in the lung at the reference gate (−4.84% to −3.22%) and more realistic Jacobian determinant values.

Details

ISSN :
24697303 and 24697311
Volume :
4
Database :
OpenAIRE
Journal :
IEEE Transactions on Radiation and Plasma Medical Sciences
Accession number :
edsair.doi.dedup.....f2d9952fcbd1cc1cb7244e64fcdab9a9