Back to Search Start Over

Cross-validation failure: small sample sizes lead to large error bars

Authors :
Gaël Varoquaux
Modelling brain structure, function and variability based on high-field MRI data (PARIETAL)
Service NEUROSPIN (NEUROSPIN)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
ANR-11-BINF-0004,NiConnect,Outils pour la Recherche Clinique par cartographie de la connectivité cérébrale fonctionnelle(2011)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Source :
NeuroImage, NeuroImage, 2017, ⟨10.1016/j.neuroimage.2017.06.061⟩, NeuroImage, Elsevier, 2017, ⟨10.1016/j.neuroimage.2017.06.061⟩
Publication Year :
2017

Abstract

International audience; Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding, MVPA, searchlight, or extraction of biomarkers. The principled approach to establish their validity and usefulness is cross-validation, testing prediction on unseen data. Here, I would like to raise awareness on error bars of cross-validation, which are often underestimated. Simple experiments show that sample sizes of many neuroimaging studies inherently lead to large error bars, eg ±10% for 100 samples. The standard error across folds strongly underestimates them. These large error bars compromise the reliability of conclusions drawn with predictive models, such as biomarkers or methods developments where, unlike with cognitive neuroimaging MVPA approaches, more samples cannot be acquired by repeating the experiment across many subjects. Solutions to increase sample size must be investigated, tackling possible increases in heterogeneity of the data.

Details

Language :
English
ISSN :
10538119 and 10959572
Database :
OpenAIRE
Journal :
NeuroImage, NeuroImage, 2017, ⟨10.1016/j.neuroimage.2017.06.061⟩, NeuroImage, Elsevier, 2017, ⟨10.1016/j.neuroimage.2017.06.061⟩
Accession number :
edsair.doi.dedup.....f2e19910f53b34a411ef5ae42daa75a3
Full Text :
https://doi.org/10.1016/j.neuroimage.2017.06.061⟩