Back to Search Start Over

Continuous gait monitoring discriminates community‐dwelling mild Alzheimer's disease from cognitively normal controls

Authors :
Amber Watts
Inbar Hillel
Dmitri Volfson
Jeffrey M. Hausdorff
Vijay R. Varma
Jacek Urbanek
Jordan Weiss
Rahul Ghosal
Vadim Zipunnikov
Source :
Alzheimer’s & Dementia: Translational Research & Clinical Interventions, Vol 7, Iss 1, Pp n/a-n/a (2021), Alzheimer's & Dementia : Translational Research & Clinical Interventions
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Introduction Few studies have explored whether gait measured continuously within a community setting can identify individuals with Alzheimer's disease (AD). This study tests the feasibility of this method to identify individuals at the earliest stage of AD. Methods Mild AD (n = 38) and cognitively normal control (CNC; n = 48) participants from the University of Kansas Alzheimer's Disease Center Registry wore a GT3x+ accelerometer continuously for 7 days to assess gait. Penalized logistic regression with repeated five‐fold cross‐validation followed by adjusted logistic regression was used to identify gait metrics with the highest predictive performance in discriminating mild AD from CNC. Results Variability in step velocity and cadence had the highest predictive utility in identifying individuals with mild AD. Metrics were also associated with cognitive domains impacted in early AD. Discussion Continuous gait monitoring may be a scalable method to identify individuals at‐risk for developing dementia within large, population‐based studies.

Details

Language :
English
ISSN :
23528737
Volume :
7
Issue :
1
Database :
OpenAIRE
Journal :
Alzheimer’s & Dementia: Translational Research & Clinical Interventions
Accession number :
edsair.doi.dedup.....f35886482bef92788828d6045bc99a50