Back to Search Start Over

Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance

Authors :
W. Alan Doolittle
John T. Gaskins
Jeffrey L. Braun
Jennifer K. Hite
Eric R. Hoglund
Zayd C. Leseman
Shafkat Bin Hoque
Habib Ahmad
Mirza Elahi
Patrick E. Hopkins
Kiumars Aryana
Yee Rui Koh
David H. Olson
Source :
The Review of scientific instruments. 92(6)
Publication Year :
2021

Abstract

Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump-probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump-probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump-probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.

Details

ISSN :
10897623
Volume :
92
Issue :
6
Database :
OpenAIRE
Journal :
The Review of scientific instruments
Accession number :
edsair.doi.dedup.....f38c22d283b3e3db408b22baf18c91db