Back to Search Start Over

Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer

Authors :
Nicholas D. Nguyen
Jason B. Fleming
Meifang Yu
Eugene J. Koay
Ya'an Kang
F. Anthony San Lucas
Sonal Gupta
Haoqiang Ying
Daniel Lin
Albert C. Koong
Cullen M. Taniguchi
Anirban Maitra
Jessica M. Molkentine
Tara N. Fujimoto
Joseph M. Herman
Conrad J. Fernandes
Amit Deorukhkar
Yanqing Huang
Publication Year :
2019
Publisher :
American Society for Clinical Investigation, 2019.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth; however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to the oncogenicity of PDAC, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin-related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a 2-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared with vehicle. We found that the chief tumor-suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....f3babfceaa2914d8d295a54c5f9366df