Back to Search Start Over

Near-Real-Time Application of SEVIRI Aerosol Optical Depth Algorithm

Authors :
Krzysztof M. Markowicz
Olga Zawadzka-Manko
Iwona S. Stachlewska
Source :
Remote Sensing, Vol 12, Iss 1481, p 1481 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Within the framework of the Satellite-based Monitoring Initiative for Regional Air quality (SAMIRA) project, the near-real-time (NRT) operation has been documented for an in-house developed algorithm used for the retrieval of aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat Second Generation (MSG). With the frequency of 15 min at a spatial resolution of roughly 5.5 × 5.5 km the AOD maps are provided for the country domains of Poland, the Czech Republic, Romania, and Southern Norway. A significant improvement has been reported in terms of modification of the existing prototype algorithm that it suits the operational NRT AOD retrieval for an extended area. This is mainly due to the application of the optimal interpolation method for the AOD estimation on reference days with the use of ground-based measurements of the Aerosol Robotic Network (AERONET) and the Aerosol Research Network (PolandAOD-NET) as well as simulations of the Copernicus Atmosphere Monitoring Service (CAMS). The main issues that have been addressed regarding surface reflectance estimation, cloud screening and uncertainty calculation. Exemplary maps of the NRT retrieval have been presented.

Details

ISSN :
20724292
Volume :
12
Database :
OpenAIRE
Journal :
Remote Sensing
Accession number :
edsair.doi.dedup.....f3d91f8a6e7337994778993f00a36a4a
Full Text :
https://doi.org/10.3390/rs12091481