Back to Search Start Over

Sharp large time behaviour in N-dimensional reaction-diffusion equations of bistable type

Authors :
Jean-Michel Roquejoffre
Violaine Roussier-Michon
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Differential Equations, Journal of Differential Equations, 2022, 339, pp.134-151. ⟨10.1016/j.jde.2022.07.043⟩
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

We study the large time behaviour of the reaction-diffsuion equation $\partial_t u=\Delta u +f(u)$ in spatial dimension $N$, when the nonlinear term is bistable and the initial datum is compactly supported. We prove the existence of a Lipschitz function $s^\infty$ of the unit sphere, such that $u(t,x)$ converges uniformly in $\mathbb{R}^N$, as $t$ goes to infinity, to $U_{c_*}\bigg(|x|-c_*t + \frac{N-1}{c_*} \mathrm{ln}t + s^\infty\Big(\frac{x}{|x|}\Big)\bigg)$, where $U_{c*}$ is the unique 1D travelling profile. This extends earlier results that identified the locations of the level sets of the solutions with $o_{t\to+\infty}(t)$ precision, or identified precisely the level sets locations for almost radial initial data.

Details

ISSN :
00220396 and 10902732
Volume :
339
Database :
OpenAIRE
Journal :
Journal of Differential Equations
Accession number :
edsair.doi.dedup.....f3e2c778282011cb92deb98f2afcef77