Back to Search
Start Over
Sharp large time behaviour in N-dimensional reaction-diffusion equations of bistable type
- Source :
- Journal of Differential Equations, Journal of Differential Equations, 2022, 339, pp.134-151. ⟨10.1016/j.jde.2022.07.043⟩
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- We study the large time behaviour of the reaction-diffsuion equation $\partial_t u=\Delta u +f(u)$ in spatial dimension $N$, when the nonlinear term is bistable and the initial datum is compactly supported. We prove the existence of a Lipschitz function $s^\infty$ of the unit sphere, such that $u(t,x)$ converges uniformly in $\mathbb{R}^N$, as $t$ goes to infinity, to $U_{c_*}\bigg(|x|-c_*t + \frac{N-1}{c_*} \mathrm{ln}t + s^\infty\Big(\frac{x}{|x|}\Big)\bigg)$, where $U_{c*}$ is the unique 1D travelling profile. This extends earlier results that identified the locations of the level sets of the solutions with $o_{t\to+\infty}(t)$ precision, or identified precisely the level sets locations for almost radial initial data.
Details
- ISSN :
- 00220396 and 10902732
- Volume :
- 339
- Database :
- OpenAIRE
- Journal :
- Journal of Differential Equations
- Accession number :
- edsair.doi.dedup.....f3e2c778282011cb92deb98f2afcef77