Back to Search Start Over

High Efficiency Mesoscopic Solar Cells Using CsPbI3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering

Authors :
Yueli Liu
Keqiang Chen
Qiaohui Zhong
Qitao Li
Tingqiang Yang
Wei Jin
Yingwei Wang
Qiaoliang Bao
Yupeng Zhang
Peter Reiss
Udo Bach
Han Zhang
SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
ANR-16-CE05-0019,PERSIL,Cellules solaires tandem Perovskite-Silicium nanocristallin(2016)
Source :
Journal of the American Chemical Society, Journal of the American Chemical Society, 2020, 142, pp.3775-3783. ⟨10.1021/jacs.9b10700⟩, Journal of the American Chemical Society, American Chemical Society, 2020, 142, pp.3775-3783
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

All-inorganic α-CsPbI3 perovskite quantum dots (QDs) are attracting great interest as solar cell absorbers due to their appealing light harvesting properties and enhanced stability due to the absence of volatile organic constituents. Moreover, ex situ synthesized QDs significantly reduce the variability of the perovskite layer deposition process. However, the incorporation of α-CsPbI3 QDs into mesoporous TiO2 (m-TiO2) is highly challenging, but these constitute the best performing electron transport materials in state-of-the-art perovskite solar cells. Herein, the m-TiO2 surface is engineered using an electron-rich cesium-ion containing methyl acetate solution. As one effect of this treatment, the solid-liquid interfacial tension at the TiO2 surface is reduced and the wettability is improved, facilitating the migration of the QDs into m-TiO2. As a second effect, Cs+ ions passivate the QD surface and promote the charge transfer at the m-TiO2/QD interface, leading to an enhancement of the electron injection rate by a factor of 3. In combination with an ethanol-environment smoothing route that significantly reduces the surface roughness of the m-TiO2/QD layer, optimized devices exhibit highly reproducible power conversion efficiencies exceeding 13%. The best cell with an efficiency of 14.32% (reverse scan) reaches a short-circuit current density of 17.77 mA cm-2, which is an outstanding value for QD-based perovskite solar cells.

Details

ISSN :
15205126 and 00027863
Volume :
142
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....f42f10c9f3ae9fa076666951edd462cc
Full Text :
https://doi.org/10.1021/jacs.9b10700