Back to Search Start Over

Which root architectural elements contribute the best to anchorage of Pinus species? Insights from in silico experiments

Authors :
Thierry Fourcaud
Sylvain Dupont
Frédéric Danjon
Ming Yang
Pauline Défossez
Interactions Sol Plante Atmosphère (ISPA)
Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
Biodiversité, Gènes et Communautés
Institut National de la Recherche Agronomique (INRA)
Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
Interactions Sol Plante Atmosphère (UMR ISPA)
Biodiversité, Gènes & Communautés (BioGeCo)
Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD [France-Sud])
Source :
Plant and Soil, Plant and Soil, Springer Verlag, 2017, 411 (1), pp.275-291. ⟨10.1007/s11104-016-2992-0⟩
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Background and Aims Root anchorage function is crucial for tree survival as most trees are exposed to recurrent wind throughout their lifespan. Trees exhibit a large variability of root system architecture (RSA) due genetic and environmental factors. This study aims to understand the links between RSA and tree stability. Methods A 3D biomechanical model was used to simulate tree overturning. To capture the variability of sinker RSA, fourteen virtual root patterns were created from an ensemble average of measured Pinus pinaster root systems. Root virtual patterns and tree-pulling simulations were verified against experimental data. Results The model predicts realistic tree anchorage strength, root stress, and failure patterns. Only a few root components contribute significantly to anchorage strength. The taproot contributes the most to anchorage rigidity, representing 61 % of the anchorage strength. The windward roots failure drives ultimate anchorage failure, representing 25 % of the anchorage strength. Simulations show that root secondary thickening induces higher anchorage rigidity and increases anchorage strength by 58 %. Conclusions This innovative approach appears promising for describing tree stability and its acclimation to external constraints.

Details

ISSN :
15735036 and 0032079X
Volume :
411
Database :
OpenAIRE
Journal :
Plant and Soil
Accession number :
edsair.doi.dedup.....f4385da1a75658c59ad5dcb229431ef1
Full Text :
https://doi.org/10.1007/s11104-016-2992-0