Back to Search Start Over

FMECA and MFCC-Based Early Wear Detection in Gear Pumps in Cost-Aware Monitoring Systems

Authors :
Jang-Wook Hur
Ugochukwu Ejike Akpudo
Geon-Hui Lee
Source :
Electronics, Vol 10, Iss 2939, p 2939 (2021), Electronics; Volume 10; Issue 23; Pages: 2939
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and uncertainty. Improving the field and line clam are considered as the solutions for these failures, yet they are quite insufficient for optimal reliability. This research, therefore, suggests a method for early wear detection in gear pumps following an extensive failure modes, effects, and criticality analysis (FMECA) of an AP3.5/100 external gear pump manufactured by BESCO. To replicate this condition, fine particles of iron oxide (Fe2O3) were mixed with the experimental fluid, and the resulting vibration data were collected, processed, and exploited for wear detection. The intelligent wear detection process was explored using various machine learning algorithms following a mel-frequency cepstral coefficient (MFCC)-based discriminative feature extraction process. Among these algorithms, extensive performance evaluation reveals that the random forest classifier returned the highest test accuracy of 95.17%, while the k-nearest neighbour was the most cost efficient following cross validations. This study is expected to contribute to improved evaluations of gear pump failure diagnosis and prognostics.

Details

Language :
English
ISSN :
20799292
Volume :
10
Issue :
2939
Database :
OpenAIRE
Journal :
Electronics
Accession number :
edsair.doi.dedup.....f44ded43071910cd3b5f3eef7755b96d