Back to Search Start Over

Early Detection of Change by Applying Scale-Space Methodology to Hyperspectral Images

Authors :
Samuel Ortega
Thomas Haugland Johansen
Lasse Holmström
Jose Ignacio Zaballos
Gustavo M. Callico
Himar Fabelo
Stig Uteng
Fred Godtliebsen
Source :
Applied Sciences, Volume 10, Issue 7, Applied Sciences, Vol 10, Iss 2298, p 2298 (2020)
Publication Year :
2020
Publisher :
MDPI, 2020.

Abstract

Given an object of interest that evolves in time, one often wants to detect possible changes in its properties. The first changes may be small and occur in different scales and it may be crucial to detect them as early as possible. Examples include identification of potentially malignant changes in skin moles or the gradual onset of food quality deterioration. Statistical scale-space methodologies can be very useful in such situations since exploring the measurements in multiple resolutions can help identify even subtle changes. We extend a recently proposed scale-space methodology to a technique that successfully detects such small changes and at the same time keeps false alarms at a very low level. The potential of the novel methodology is first demonstrated with hyperspectral skin mole data artificially distorted to include a very small change. Our real data application considers hyperspectral images used for food quality detection. In these experiments the performance of the proposed method is either superior or on par with a standard approach such as principal component analysis.

Details

Language :
English
Database :
OpenAIRE
Journal :
Applied Sciences, Volume 10, Issue 7, Applied Sciences, Vol 10, Iss 2298, p 2298 (2020)
Accession number :
edsair.doi.dedup.....f470ce275d246e2d9ad820b2f0cf4e1d