Back to Search Start Over

Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells

Authors :
Wenjuan He
Matthew D. Breyer
Min Zhang
Timothy S. Blackwell
Linda S. Davis
Min Zhao
Fiona E. Yull
Chuan-Ming Hao
Source :
Pflügers Archiv - European Journal of Physiology. 466:357-367
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

Details

ISSN :
14322013 and 00316768
Volume :
466
Database :
OpenAIRE
Journal :
Pflügers Archiv - European Journal of Physiology
Accession number :
edsair.doi.dedup.....f4cc2cad977f52e4b5141cb4eb8f2bfe
Full Text :
https://doi.org/10.1007/s00424-013-1328-7