Back to Search
Start Over
Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss
- Publication Year :
- 2006
- Publisher :
- ELSEVIER, 2006.
-
Abstract
- Noise-induced hearing loss has been associated with alterations in cochlear blood flow. Our study analyzed the expression of Vascular Endothelial Growth Factor (VEGF) and its functional receptors, Flt-1 and Flk-1, in the cochlear structures of noise-exposed and unexposed guinea pigs. VEGF is a prototypical angiogenic agent, with multiple functions on vascular biology, ranging from vascular permeability to endothelial cell migration, proliferation, differentiation, and survival. Acoustic trauma was induced by a continuous pure tone of 6 kHz, at 120 dB SPL for 30 min. Auditory function was evaluated by electrocochleographic recordings at 2-20 kHz for 7 days. Noise-induced cochlear morphological changes were studied by immunohistochemistry and scanning electron microscopy. The expression of VEGF and its receptors was examined by immunohistochemistry and western blotting analysis. The hearing threshold shift reached a level of 60 dB SPL on day 1 after trauma and underwent a partial recovery over time, reaching a value of about 20 dB SPL on day 7. Outer hair cell loss was more prominent in the area located 14-16 mm from the apex. Increased cochlear VEGF expression was observed in noise-exposed animals, in particular at the level of stria vascularis, spiral ligament, and spiral ganglion cells. No changes were observed in the expression of VEGF-receptors. Our data suggest a role for VEGF in the regulation of the vascular network in the inner ear after acoustic trauma and during auditory recovery, with potentially important clinical and therapeutic implications.
- Subjects :
- Vascular Endothelial Growth Factor A
Pathology
medicine.medical_specialty
noise
Hearing Loss, Sensorineural
cochlea
Guinea Pigs
Immunoblotting
Action Potentials
Vascular permeability
Biology
Sensorineural
Electron
chemistry.chemical_compound
Noise-Induced
Hair Cells, Auditory
Receptors
otorhinolaryngologic diseases
medicine
Animals
Inner ear
Receptors, Growth Factor
Scanning
Hearing Loss
Organ of Corti
Auditory
Cochlea
Spiral ganglion
Microscopy
Growth Factor
VEGF
Immunohistochemistry
Sensory Systems
VEGF-receptors
Vascular endothelial growth factor
Noise
Vascular endothelial growth factor A
medicine.anatomical_structure
Hair Cells
chemistry
Hearing Loss, Noise-Induced
Microscopy, Electron, Scanning
Settore MED/32 - AUDIOLOGIA
sense organs
Hair cell
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....f5393173bfc5df2f17c16582ec8ea2a3