Back to Search
Start Over
Barred galaxies in cosmological zoom-in simulations: the importance of feedback
- Publication Year :
- 2019
-
Abstract
- Bars are a key factor in the long-term evolution of spiral galaxies, in their unique role in redistributing angular momentum and transporting gas and stars on large scales. The Eris-suite simulations are cosmological zoom-in, N-body, smoothed-particle hydrodynamic simulations built to follow the formation and evolution of a Milky Way-sized galaxy across the build-up of the large scale structure. Here we analyse and describe the outcome of two particular simulations taken from the Eris suite - ErisBH and Eris2k - which mainly differ in the prescriptions employed for gas cooling, star formation, and feedback from supernovae and black holes. Our study shows that the enhanced effective feedback in Eris2k, due to the collective effect of the different micro-physics implementations, results in a galaxy which is less massive than its ErisBH counterpart till z~1. However, when the stellar content is large enough so that global dynamical instabilities can be triggered, the galaxy in Eris2k develops a stronger and more extended bar with respect to ErisBH. We demonstrate that he structural properties and time evolution of the two bars are very different. Our results highlight the importance of accurate sub-grid prescriptions in cosmological zoom-in simulations of the process of galaxy formation and evolution, and the possible use of a statistical sample of barred galaxies to assess the strength of the stellar feedback.<br />Comment: 16 pages, 14 Figure; accepted for publication in MNRAS; added references and figures, more details, results unchanged
- Subjects :
- Angular momentum
Evolution – galaxies
530 Physics
Method
FOS: Physical sciences
Astrophysics
Numerical – galaxies
Astrophysics::Cosmology and Extragalactic Astrophysics
1912 Space and Planetary Science
Galaxy formation and evolution
Methods
Kinematics and dynamics – galaxie
Kinematics and dynamics – galaxies
Astrophysics::Galaxy Astrophysics
Physics
Spiral galaxy
Star formation
Time evolution
Structure
Astronomy and Astrophysics
Astrophysics - Astrophysics of Galaxies
Numerical – galaxie
Galaxy
Evolution – galaxie
Supernova
Stars
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
10231 Institute for Computational Science
3103 Astronomy and Astrophysics
Subjects
Details
- Language :
- English
- ISSN :
- 00358711
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....f541185a03a4fa031e4702854fcdb731