Back to Search
Start Over
Banach–Stone theorems and Riesz algebras
- Source :
- Journal of Mathematical Analysis and Applications. 313(1):177-183
- Publication Year :
- 2006
- Publisher :
- Elsevier BV, 2006.
-
Abstract
- Let X, Y be compact Hausdorff spaces and let E, F be both Banach lattices and Riesz algebras. In this paper, the following main result shall be proved: If F has no zero-divisor and there exists a Riesz algebraic isomorphism Φ : C ( X , E ) → C ( Y , F ) such that Φ ( f ) has no zero if f has none, then X is homeomorphic to Y and E is Riesz algebraically isomorphic to F.
- Subjects :
- Discrete mathematics
Mathematics::Functional Analysis
Pure mathematics
Banach–Stone theorem
Riesz algebra
Riesz representation theorem
Applied Mathematics
Mathematics::Classical Analysis and ODEs
Zero (complex analysis)
Hausdorff space
Banach lattice
Compact space
M. Riesz extension theorem
Isomorphism
Support
Algebraic number
Riesz algebraic isomorphism
Analysis
Mathematics
Subjects
Details
- ISSN :
- 0022247X
- Volume :
- 313
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Analysis and Applications
- Accession number :
- edsair.doi.dedup.....f5428f3b513b3c1192f4fc7e23dd3707
- Full Text :
- https://doi.org/10.1016/j.jmaa.2005.08.050