Back to Search Start Over

Complexation of Ln 3+ Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties

Authors :
David Esteban-Gómez
Teresa Rodríguez-Blas
Aurora Rodríguez-Rodríguez
Andrés de Blas
Ferenc K. Kálmán
Gyula Tircsó
Imre Tóth
Attila Bényei
Carlos Platas-Iglesias
Raphaël Tripier
Martín Regueiro-Figueroa
Departamento de Química Fundamental
Universidade da Coruña
Chimie, Electrochimie Moléculaires et Chimie Analytique (CEMCA)
Institut Brestois Santé Agro Matière (IBSAM)
Université de Brest (UBO)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Faculty of Science and Technology, University of Debrecen
Department of Pharmaceutical Chemistry
University of Debrecen Egyetem [Debrecen]
Source :
Inorganic Chemistry, Inorganic Chemistry, American Chemical Society, 2016, 55 (5), pp.2227-2239. ⟨10.1021/acs.inorgchem.5b02627⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

The coordination properties toward the lanthanide ions of two macrocyclic ligands based on a cyclam platform containing picolinate pendant arms have been investigated. The synthesis of the ligands was achieved by using the well-known bis-aminal chemistry. One of the cyclam derivatives (cb-tedpa(2-)) is reinforced with a cross-bridge unit, which results in exceptionally inert [Ln(cb-tedpa)](+) complexes. The X-ray structures of the [La(cb-tedpa)Cl], [Gd(cb-tedpa)](+), and [Lu(Me2tedpa)](+) complexes indicate octadentate binding of the ligands to the metal ions. The analysis of the Yb(3+)-induced shifts in [Yb(Me2tedpa)](+) indicates that this complex presents a solution structure very similar to that observed in the solid state for the Lu(3+) analogue. The X-ray structures of [La(H2Me2tedpa)2](3+) and [Yb(H2Me2tedpa)2](3+) complexes confirm the exocyclic coordination of the metal ions, which gives rise to coordination polymers with the metal coordination environment being fulfilled by oxygen atoms of the picolinate groups and water molecules. The X-ray structure of [Gd(Hcb-tedpa)2](+) also indicates exocyclic coordination that in this case results in a discrete structure with an eight-coordinated metal ion. The nonreinforced complexes [Ln(Me2tedpa)](+) were prepared and isolated as chloride salts in nonaqueous media. However, these complexes were found to undergo dissociation in aqueous solution, except in the case of the complexes with the smallest Ln(3+) ions (Ln(3+) = Yb(3+) and Lu(3+)). A DFT investigation shows that the increased stability of the [Ln(Me2tedpa)](+) complexes in solution across the lanthanide series is the result of an increased binding energy of the ligand due to the increased charge density of the Ln(3+) ion.

Details

Language :
English
ISSN :
00201669 and 1520510X
Database :
OpenAIRE
Journal :
Inorganic Chemistry, Inorganic Chemistry, American Chemical Society, 2016, 55 (5), pp.2227-2239. ⟨10.1021/acs.inorgchem.5b02627⟩
Accession number :
edsair.doi.dedup.....f55dee5c5f32a27f98c3ade97ddd31d7
Full Text :
https://doi.org/10.1021/acs.inorgchem.5b02627⟩