Back to Search Start Over

Measurement of nanoscale DNA translocation by uracil DNA glycosylase in human cells

Authors :
Alexandre Esadze
James T. Stivers
Gaddiel Rodriguez
Philip A. Cole
Brian P. Weiser
Source :
Nucleic Acids Research
Publication Year :
2017
Publisher :
Oxford University Press (OUP), 2017.

Abstract

DNA ‘sliding’ by human repair enzymes is considered to be important for DNA damage detection. Here, we transfected uracil-containing DNA duplexes into human cells and measured the probability that nuclear human uracil DNA glycosylase (hUNG2) excised two uracil lesions spaced 10–80 bp apart in a single encounter without escaping the micro-volume containing the target sites. The two-site transfer probabilities were 100% and 54% at a 10 and 40 bp spacing, but dropped to only 10% at 80 bp. Enzyme trapping experiments suggested that site transfers over 40 bp followed a DNA ‘hopping’ pathway in human cells, indicating that authentic sliding does not occur even over this short distance. The transfer probabilities were much greater than observed in aqueous buffers, but similar to in vitro measurements in the presence of polymer crowding agents. The findings reveal a new role for the crowded nuclear environment in facilitating DNA damage detection.

Details

ISSN :
13624962 and 03051048
Volume :
45
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....f59a30fe51cc39a755fa97d1d2dea8c5