Back to Search Start Over

Muscle-Derived Stem Cell–Enriched Scaffolds Are Capable of Enhanced Healing of a Murine Volumetric Muscle Loss Defect

Authors :
David E. Kurlander
Joseph Lopez
Denver M. Lough
Anand Kumar
Howard D. Wang
Amy Quan
Source :
Plast Reconstr Surg
Publication Year :
2019
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2019.

Abstract

BACKGROUND Volumetric muscle loss secondary to traumatic or surgical causes can lead to functional and aesthetic impairments. The authors hypothesize that an implantable muscle-derived stem cell-enriched collagen scaffold could significantly augment muscle regeneration in a murine model of volumetric muscle loss. METHODS Murine muscle-derived stem cells were isolated using a modified preplating technique and seeded onto type 1 collagen scaffolds to create the muscle-derived stem cell-enriched collagen scaffolds. Murine rectus femoris defects of 5 mm were created and randomized to one of three conditions (n = 6 per group): untreated controls, collagen scaffold only, and muscle-derived stem cell-enriched collagen scaffolds. In vivo muscle healing was quantified using micro-computed tomography. Muscle explants were analyzed using standard histology and whole-mount immunofluorescence at 8 weeks. RESULTS In vivo experiments demonstrated significantly greater quadriceps cross-sectional area in the muscle-derived stem cell-enriched collagen scaffold group compared with controls on micro-computed tomography (0.74 ± 0.21 versus 0.55 ± 0.06 versus 0.49 ± 0.04 ratio of experimental to naive quadriceps cross-sectional area; p < 0.05). Muscle explants of the muscle-derived stem cell-enriched collagen scaffold group demonstrated significantly higher cellular density compared with controls (1185 ± 360 versus 359 ± 62 versus 197 ± 68 nuclei/high-power field; p < 0.01). Immunofluorescence for laminin and myosin heavy chain confirmed formation of organized muscle fibers within the defect of the muscle-derived stem cell-enriched collagen scaffold group only. However, appreciable confocal colocalization of myosin heavy chain with green fluorescent protein expression was low. CONCLUSIONS The results of this study indicate that muscle-derived stem cell-enriched scaffolds significantly improved skeletal muscle regeneration in a murine muscle defect model. Based on the low fluorescent colocalization, host progenitor cells appear to contribute significantly to intradefect myogenesis, suggesting that deployment of a viable muscle-derived stem cell-enriched scaffold stimulates a regenerative mitogen response in native tissues.

Details

ISSN :
00321052
Volume :
143
Database :
OpenAIRE
Journal :
Plastic and Reconstructive Surgery
Accession number :
edsair.doi.dedup.....f5bea1235a4ae6a9de5f3bf30bca42e2
Full Text :
https://doi.org/10.1097/prs.0000000000005273