Back to Search Start Over

Monitoring recessions: A Bayesian sequential quickest detection method

Authors :
Xuguang Simon Sheng
Jingyun Yang
Haixi Li
Source :
Int J Forecast
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Monitoring business cycles faces two potentially conflicting objectives: accuracy and timeliness. To strike a balance between these dual objectives, we propose a Bayesian sequential quickest detection method to identify turning points in real time with a sequential stopping time as a solution. Using four monthly indexes of real economic activity in the United States, we evaluated the method’s real-time ability to date the past five recessions. The proposed method identified similar turning-point dates as the National Bureau of Economic Research (NBER), with no false alarms, but on average, it dated peaks four months faster and troughs 10 months faster relative to the NBER announcement. The timeliness of our method is also notable compared to the dynamic factor Markov-switching model: the average lead time was about five months when dating peaks and two months when dating troughs.

Details

ISSN :
01692070
Volume :
37
Database :
OpenAIRE
Journal :
International Journal of Forecasting
Accession number :
edsair.doi.dedup.....f6045c542e76f0ff05d2b8771fa9cec2
Full Text :
https://doi.org/10.1016/j.ijforecast.2020.06.013