Back to Search Start Over

Tumor saliency estimation for breast ultrasound images via breast anatomy modeling

Authors :
Jianrui Ding
Boyu Zhang
Yingtao Zhang
Ying Wang
Chunping Ning
Heng-Da Cheng
Fei Xu
Source :
Artificial intelligence in medicine. 119
Publication Year :
2020

Abstract

Tumor saliency estimation aims to localize tumors by modeling the visual stimuli in medical images. However, it is a challenging task for breast ultrasound (BUS) image due to the complicated anatomic structure of the breast and poor image quality; and existing saliency estimation approaches only model the generic visual stimuli, e.g., local and global contrast, location, and feature correlation, and achieve poor performance for tumor saliency estimation. In this paper, we propose a novel optimization model to estimate tumor saliency by utilizing breast anatomy. First, we model breast anatomy and decompose breast ultrasound image into layers using Neutro-Connectedness; then utilize the layers to generate the foreground and background maps; and finally propose a novel objective function to estimate the tumor saliency by integrating the foreground map, background map, adaptive center bias, and region-based correlation cues. The extensive experiments demonstrate that the proposed approach obtains more accurate foreground and background maps with breast anatomy; especially, for the images having large or small tumors. Meanwhile, the new objective function can handle the images without tumors. The newly proposed method achieves state-of-the-art performance comparing to eight tumor saliency estimation approaches using two BUS datasets.

Details

ISSN :
18732860
Volume :
119
Database :
OpenAIRE
Journal :
Artificial intelligence in medicine
Accession number :
edsair.doi.dedup.....f66f0a82008fd8598e518e7da25bf475