Back to Search Start Over

DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation

Authors :
Yiping Zhan
J. Landis
Richard T. Scott
Xin Tao
Emre Seli
Diego Marin
Jenna Bedard
Scott J. Morin
Source :
Aging (Albany NY)
Publication Year :
2018
Publisher :
Impact Journals, LLC, 2018.

Abstract

An algorithm assessing the methylation levels of 353 informative CpG sites in the human genome permits accurate prediction of the chronologic age of a subject. Interestingly, when there is discrepancy between the predicted age and chronologic age (age acceleration or “AgeAccel”), patients are at risk for morbidity and mortality. Identification of infertile patients at risk for accelerated reproductive senescence may permit preventative action. This study aimed to assess the accuracy of the “epigenetic clock” concept in reproductive age women undergoing fertility treatment by applying the age prediction algorithm in peripheral (white blood cells [WBCs]) and follicular somatic cells (cumulus cells [CCs]), and to identify whether women with premature reproductive aging (diminished ovarian reserve) were at risk of AgeAccel in their age prediction. Results indicated that the epigenetic algorithm accurately predicts age when applied to WBCs but not to CCs. The age prediction of CCs was substantially younger than chronologic age regardless of the patient’s age or response to stimulation. In addition, telomeres of CCs were significantly longer than that of WBCs. Our findings suggest that CCs do not demonstrate changes in methylome-predicted age or telomere-length in association with increasing female age or ovarian response to stimulation.

Details

ISSN :
19454589
Volume :
10
Database :
OpenAIRE
Journal :
Aging
Accession number :
edsair.doi.dedup.....f679cbb807f7af135c0a335b48113d50
Full Text :
https://doi.org/10.18632/aging.101670