Back to Search Start Over

Homogenization of periodic nonconvex integral functionnals in terms of young measures

Authors :
Jean-Philippe Mandallena
Gérard Michaille
Omar Anza Hafsa
Laboratoire de Mécanique et Génie Civil (LMGC)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Mathématiques, Informatique, Physique, et Applications / Université de Nîmes (MIPA)
Université de Nîmes (UNIMES)
University of Zurich
Anza Hafsa, O
Source :
ESAIM: Control, Optimisation and Calculus of Variations, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2006, 12, pp.35-51. ⟨10.1051/cocv:2005031⟩
Publication Year :
2006
Publisher :
HAL CCSD, 2006.

Abstract

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ -limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

Details

Language :
English
ISSN :
12928119 and 12623377
Database :
OpenAIRE
Journal :
ESAIM: Control, Optimisation and Calculus of Variations, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2006, 12, pp.35-51. ⟨10.1051/cocv:2005031⟩
Accession number :
edsair.doi.dedup.....f681fe74d732d71da7e297ee91c40cee
Full Text :
https://doi.org/10.1051/cocv:2005031⟩