Back to Search Start Over

Chemical modeling of internal photon-dominated regions surrounding deeply embedded HC/UCHII regions

Authors :
Peter Schilke
R. Choudhury
Gwendoline Stéphan
Benjamin Godard
J. Le Bourlot
A. Schmiedeke
Álvaro Sánchez-Monge
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112))
Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Max Planck Institute for Radio Astronomy
Universität zu Köln
INAF - Osservatorio Astrofisico di Arcetri (OAA)
Istituto Nazionale di Astrofisica (INAF)
Source :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2018, 617, pp.A60. ⟨10.1051/0004-6361/201730639⟩
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

Aims. We aim to investigate the chemistry of internal photon-dominated regions (PDRs) surrounding deeply embedded hypercompact (HC) and ultracompact (UC) HII regions. We search for specific tracers of this evolutionary stage of massive star formation that can be detected with current astronomical facilities. Methods. We modeled hot cores with embedded HC/UCHII regions (called HII region models in the article despite the fact that we do not model the HII region itself), by coupling the astrochemical code Saptarsy to a radiative transfer framework obtaining the spatio-temporal evolution of abundances as well as time-dependent synthetic spectra. In these models where we focused on the internal PDR surrounding the HII region, the gas temperature is set to the dust temperature and we do not include dynamics thus the density structure is fixed. We compared this to hot molecular core (HMC) models and studied the effect on the chemistry of the radiation field which is included in the HII region models only during the computation of abundances. In addition, we investigated the chemical evolution of the gas surrounding HII regions with models of different densities at the ionization front, different sizes of the ionized cavity and different initial abundances. Results. We obtain the time evolution of synthetic spectra for a dozen of selected species as well as ratios of their integrated intensities. We find that some molecules such as C, N2H+, CN, and HCO do not trace the inner core and so are not good tracers to distinguish the HII/PDR regions to the HMCs phase. On the contrary, C+ and O trace the internal PDRs, in the two models starting with different initial abundances, but are unfortunately currently unobservable with the current achievable spatial resolution because of the very thin internal PDR (Δ rPDR < 100 AU). The emission of these two tracers is very dependent on the size of the HII region and on the density in the PDR. In addition, we find that the abundance profiles are highly affected by the choice of the initial abundances, hence the importance to properly define them.

Details

ISSN :
00046361
Database :
OpenAIRE
Journal :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2018, 617, pp.A60. ⟨10.1051/0004-6361/201730639⟩
Accession number :
edsair.doi.dedup.....f6d01d15dbd3019816870d1a7e240a8c
Full Text :
https://doi.org/10.48550/arxiv.1803.08502