Back to Search
Start Over
Invisible Silver Nanomesh Skin Electrode via Mechanical Press Welding
- Source :
- Nanomaterials, Volume 10, Issue 4, Nanomaterials, Vol 10, Iss 633, p 633 (2020)
- Publication Year :
- 2020
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2020.
-
Abstract
- Silver nanowire (AgNW) has been studied as an important material for next-generation wearable devices due to its high flexibility, high electrical conductivity and high optical transmittance. However, the inherently high surface roughness of AgNWs and low adhesion to the substrate still need to be resolved for various device applications. In this study, an embedded two-dimensional (2D) Ag nanomesh was fabricated by mechanical press welding of AgNW networks with a three-dimensional (3D) fabric shape into a nanomesh shape, and by embedding the Ag nanomesh in a flexible substrate. The effect of the embedded AgNWs on the physical and electrical properties of a flexible transparent electrode was investigated. By forming embedded nanomesh-type AgNWs from AgNW networks, improvements in physical and electrical properties, such as a 43% decrease in haziness, 63% decrease in sheet resistance, and 26% increase in flexibility, as well as improved adhesion to the substrate and low surface roughness, were observed.
- Subjects :
- Materials science
General Chemical Engineering
wearable conductive film
Welding
Substrate (electronics)
Surface finish
Article
polydimethylsiloxane (PDMS)
law.invention
lcsh:Chemistry
chemistry.chemical_compound
law
Surface roughness
General Materials Science
Sheet resistance
welding
business.industry
silver nanowire
Adhesion
transparent conductive film
Nanomesh
lcsh:QD1-999
chemistry
Electrode
Optoelectronics
business
Subjects
Details
- Language :
- English
- ISSN :
- 20794991
- Database :
- OpenAIRE
- Journal :
- Nanomaterials
- Accession number :
- edsair.doi.dedup.....f6d21b81d6b56b319582f42855920baa
- Full Text :
- https://doi.org/10.3390/nano10040633