Back to Search Start Over

Sums of squares certificates for polynomial moment inequalities

Authors :
Klep, Igor
Magron, Victor
Volčič, Jurij
Department of Mathematics (University of Ljubljana)
University of Ljubljana
Equipe Polynomial OPtimization (LAAS-POP)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Drexel University
This work was supported by the Slovenian Research Agency grants J1-2453, N1-0217, J1-3004 and P1-0222, the NSF grant DMS-1954709, the FastQI grant funded by the Institut Quantique Occitan, the PHC Proteus grant 46195TA as well as by the NationalResearch Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence andTechnological Enterprise (CREATE) programme.
ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011)
ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme)
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019)
Publication Year :
2023

Abstract

This paper introduces and develops the algebraic framework of moment polynomials, which are polynomial expressions in commuting variables and their formal mixed moments. Their positivity and optimization over probability measures supported on semialgebraic sets and subject to moment polynomial constraints is investigated. A positive solution to Hilbert's 17th problem for pseudo-moments is given. On the other hand, moment polynomials positive on actual measures are shown to be sums of squares and formal moments of squares up to arbitrarily small perturbation of their coefficients. When only measures supported on a bounded semialgebraic set are considered, a stronger algebraic certificate for moment polynomial positivity is derived. This result gives rise to a converging hierarchy of semidefinite programs for moment polynomial optimization. Finally, as an application, two nonlinear Bell inequalities from quantum physics are settled.<br />26 pages

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....f79f7f49d62c04e432481a03817e2053