Back to Search Start Over

Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning

Authors :
Magdi M Mostafa
Abdel-Salam Abdalla Mohamed
Khaled Abdelazeem
Ali Natag Riad Mostafa
Hazem Abdelmotaal
Source :
Translational Vision Science & Technology
Publication Year :
2020
Publisher :
The Association for Research in Vision and Ophthalmology, 2020.

Abstract

Purpose To assess the use of deep learning for high-performance image classification of color-coded corneal maps obtained using a Scheimpflug camera. Methods We used a domain-specific convolutional neural network (CNN) to implement deep learning. CNN performance was assessed using standard metrics and detailed error analyses, including network activation maps. Results The CNN classified four map-selectable display images with average accuracies of 0.983 and 0.958 for the training and test sets, respectively. Network activation maps revealed that the model was heavily influenced by clinically relevant spatial regions. Conclusions Deep learning using color-coded Scheimpflug images achieved high diagnostic performance with regard to discriminating keratoconus, subclinical keratoconus, and normal corneal images at levels that may be useful in clinical practice when screening refractive surgery candidates. Translational relevance Deep learning can assist human graders in keratoconus detection in Scheimpflug camera color-coded corneal tomography maps.

Details

Language :
English
ISSN :
21642591
Volume :
9
Issue :
13
Database :
OpenAIRE
Journal :
Translational Vision Science & Technology
Accession number :
edsair.doi.dedup.....f7b8267002a0299b4fc750676b141205