Back to Search
Start Over
Silver nanowires with optimized silica coating as versatile plasmonic resonators
- Source :
- Scientific Reports, Scientific Reports, Vol 9, Iss 1, Pp 1-12 (2019)
- Publication Year :
- 2018
-
Abstract
- Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70 nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stöber method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems.
- Subjects :
- 0301 basic medicine
Nanostructure
Materials science
Nanowire
Nanoparticle
lcsh:Medicine
FOS: Physical sciences
Nanotechnology
Substrate (electronics)
Dielectric
engineering.material
Article
03 medical and health sciences
0302 clinical medicine
Coating
lcsh:Science
Plasmon
Multidisciplinary
lcsh:R
030104 developmental biology
ddc:540
engineering
Institut für Chemie
lcsh:Q
Inhouse research on structure dynamics and function of matter
Layer (electronics)
030217 neurology & neurosurgery
Physics - Optics
Optics (physics.optics)
Subjects
Details
- ISSN :
- 20452322
- Volume :
- 9
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Scientific reports
- Accession number :
- edsair.doi.dedup.....f7e86e8685c59f8580b957e4561d30f3