Back to Search Start Over

Coupling energy homeostasis with a mechanism to support plasticity in brain trauma

Authors :
Fernando Gomez-Pinilla
Rahul Agrawal
Karen Reue
Laurent Vergnes
Ethika Tyagi
Source :
Biochimica et biophysica acta, vol 1842, iss 4
Publication Year :
2013

Abstract

Metabolic dysfunction occurring after traumatic brain injury (TBI) is an important risk factor for the development of psychiatric illness. In the present study, we utilized an omega-3 diet during early life as a metabolic preconditioning to alter the course of TBI during adulthood. TBI animals under omega-3 deficiency were more prone to alterations in energy homeostasis (adenosine monophosphate-activated protein kinase; AMPK phosphorylation and cytochrome C oxidase II; COII levels) and mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PGC-1α and mitochondrial transcription factor A; TFAM). A similar response was found for brain-derived neurotrophic factor (BDNF) and its signaling through tropomyosin receptor kinase B (TrkB). The results from in vitro studies showed that 7,8-dihydroxyflavone (7,8-DHF), a TrkB receptor agonist, upregulates the levels of biogenesis activator PGC-1α, and CREB phosphorylation in neuroblastoma cells suggesting that BDNF–TrkB signaling is pivotal for engaging signals related to synaptic plasticity and energy metabolism. The treatment with 7,8-DHF elevated the mitochondrial respiratory capacity, which emphasizes the role of BDNF–TrkB signaling as mitochondrial bioenergetics stimulator. Omega-3 deficiency worsened the effects of TBI on anxiety-like behavior and potentiated a reduction of anxiolytic neuropeptide Y1 receptor (NPY1R). These results highlight the action of metabolic preconditioning for building long-term neuronal resilience against TBI incurred during adulthood. Overall, the results emphasize the interactive action of metabolic and plasticity signals for supporting neurological health.

Details

ISSN :
00063002
Volume :
1842
Issue :
4
Database :
OpenAIRE
Journal :
Biochimica et biophysica acta
Accession number :
edsair.doi.dedup.....f7f9dafb30459995dca4b5fa5c4ea198